Write your name here	
Surname	Other names
Pearson Edexcel Level 1/Level 2 GCSE (9–1)	Centre Number Candidate Number
Mathematics	
Iteration	
	Paper Reference
You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.	

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- You must show all your working.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

- The total mark for this paper is **39**. There are **6** questions.
- Questions have been arranged in an ascending order of mean difficulty, as found by all students in the June 2017–November 2019 examinations.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

1 (a) Show that the equation $x^3 + x = 7$ has a solution between 1 and 2.

(b) Show that the equation $x^3 + x = 7$ can be rearranged to give $x = \sqrt[3]{7 - x}$

(c) Starting with $x_0 = 2$, use the iteration formula $x_{n+1} = \sqrt[3]{7-x_n}$ three times to find an estimate for a solution of $x^3 + x = 7$

.....

(3)

(2)

(1)

(Total for Question 1 is 6 marks)

2 Using
$$x_{n+1} = -2 - \frac{4}{x_n^2}$$

with $x_0 = -2.5$

(*a*) find the values of x_1 , x_2 and x_3

 $x_1 = \dots$ $x_2 = \dots$ $x_3 = \dots$ (3)

(b) Explain the relationship between the values of x_1 , x_2 and x_3 and the equation $x^3 + 2x^2 + 4 = 0$

(2) (Total for Question 2 is 5 marks)

3 (a) Show that the equation $x^3 + 7x - 5 = 0$ has a solution between x = 0 and x = 1

(b) Show that the equation
$$x^3 + 7x - 5 = 0$$
 can be arranged to give $x = \frac{5}{x^2 + 7}$

(c) Starting with $x_0 = 1$, use the iteration formula $x_{n+1} = \frac{5}{x_n^2 + 7}$ three times to find an estimate for the solution of $x^3 + 7x - 5 = 0$

(3)

(2)

(2)

(*d*) By substituting your answer to part (*c*) into $x^3 + 7x - 5$, comment on the accuracy of your estimate for the solution to $x^3 + 7x - 5 = 0$

(2) (Total for Question 3 is 9 marks)

4 (a) Show that the equation $x^3 + 5x - 4 = 0$ has a solution between x = 0 and x = 1

(b) Show that the equation $x^3 + 5x - 4 = 0$ can be arranged to give $x = \frac{4}{x^2 + 5}$

(c) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{4}{x_n^2 + 5}$ twice, to find an estimate for the solution of $x^3 + 5x - 4 = 0$

(3)

(2)

(2)

(Total for Question 4 is 7 marks)

5 (a) Show that the equation $x^3 - 3x^2 + 3 = 0$ has a solution between x = 2 and x = 3

(b) Show that the equation $x^3 - 3x^2 + 3 = 0$ can be rearranged to give $x = \sqrt[3]{3x^2 - 3}$

(1)

(2)

(c) Starting with $x_0 = 2$, use the iteration formula $x_{n+1} = \sqrt[3]{3x^2 - 3}$ to find the value of x_2 . Give your answer correct to 3 decimal places.

(3)

(Total for Question 5 is 6 marks)

6 (a) Show that the equation $3x^2 - x^3 + 3 = 0$ can be rearranged to give

$$x = 3 + \frac{3}{x^2}$$

(2)

(b) Using

$$x_{n+1} = 3 + \frac{3}{x_n^2}$$
 with $x_0 = 3.2$,

find the values of x_1 , x_2 and x_3

(c) Explain what the values of x₁, x₂ and x₃ represent.
(3)
(c) Explain what the values of x₁, x₂ and x₃ represent.
(1)
(1)
(Total for Question 6 is 6 marks)

TOTAL MARKS FOR PAPER: 39