Exam Style Questions Congruent Triangles

Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser
You may use tracing paper if needed

Guidance

1. Read each question carefully before you begin answering it.
2. Don't spend too long on one question.
3. Attempt every question.
4. Check your answers seem right.
5. Always show your workings

Revision for this topic

www.corbettmaths.com/contents
Video 67

1. ABC and LMN are congruent triangles.

Angle $B=$ Angle N

(a) Write down the length of MN .

(1)
(b) Explain why angle $\mathrm{A}=$ angle L

As $A B=L N$ and Angle $B=$ Angle N

Then Angle $A=$ Angle L
2. Shown below are six triangles that are not drawn accurately.

Which two triangles are congruent to triangle A?
(2)
3. For each pair below, state the condition why they are congruent.
(a)

condition: SAS
(1)
(b)

Constion 5 SS
(1)
(c)

condition: AAS
or (1)
ASA
4. James and Chris each draw a triangle with one side of 10 cm , one angle of 45° and one angle of 85°.

James says their triangles are congruent.
Explain why James is incorrect.

10

We do not know exact location of each angle. The two triangles above are not congruent
5. $A B C D$ is a parallelogram.

Prove that triangles ABD and BCD are congruent.

$B D$ is shared

$B A=C D$ (opposite sides of a parallelogram)
$B C=A D$ (opposite sides of a parallelogram)
Therefore ABD and BCD are congruent due to Side, Side, Side.
6. Two of the triangles below are congruent.

Identify the two congruent triangles and explain your answer.

and

Reason Depends on values found: \qquad
Could be SSS/SAS/RHS/ASA etc
\qquad
\qquad
\qquad
\qquad
(4)
7. The diagram shows a rhombus DEFG.

The diagonals intersect at H .

Prove triangles DGH and EFH are congruent.
$D G=E F$ as rhombus (opposite sides)
DH = HF diagonals bisect each other
GH = EH diagonals bisect each other
DGH and EFH are congruent as SSS
(4)
8. In the diagram, the lines CE and DF intersect at G.
$C D$ and $F E$ are parallel and $C D=F E$.

Prove that triangles CDG and EFG are congruent.
$C D=F E$ (given)
Angle DCE $=\mathrm{FEC}$ (alternate angles)
Angle CDF = EFD (alternate angles)
CDG and EFG are congruent as ASA
9. DEF is an equilateral triangle.

G lies on EF.
$D G$ is perpendicular to $F E$.
Prove DFG is congruent to DEG.
DG is shared
$D F=D E$ as equilateral triangle
Angle DGE = DGF $=90$ degrees
Therefore congruent as RHS.
Or Angle EFD $=\mathrm{FED}=60$ degrees as equilateral triangle.
Therefore both EDG $=$ FDG $=30$ degrees
So could say SAS.
Or even AAS or ASA
10. ABC is an isosceles triangle in which $\mathrm{AC}=\mathrm{BC}$.
D and E are points on $B C$ and $A C$ such that $C E=C D$.

Prove triangles ACD and BCE are congruent.
$A C=B C$ (sides of an isosceles triangle)
Angle $A C D=B C E$ (shared)
$C E=C D$ (given)
Therefore SAS.
11. ABCD and LMNO are squares.

Angle CBL $=x$

Prove that triangles ABO and CBL are congruent.

1) Angles $B L C=A O B=90$ degrees as $L M N O$ is a square.
2) Angle $A B L=90-x$ as $A B C$ is a right angle and $C B L=x$
3) Angle $B C L=90-x$ as angles in a triangle add to 180 and Angle $C B L=x$ and Angle $B L C=90$.
4) Angle $O A B=x$ as angles in a triangle add to 180 and Angle $A B L=90-x$ and Angle $A O B=90$.
5) $A B=B C$ as a square.

Congruent as ASA.
12. $A B C D$ is a square, X is a point in the diagonal $B D$ and the perpendicular from B to $A X$ meets $A C$ in Y.

Prove that triangles AXD and AYB are congruent.
$A B=A D$ as a square
$B A C=A D B=45$ degrees (diagonals bisect right angle)
Let $A B Y=x$
Therefore AYB $=180-45-x=135-x$
EYF = AYB (vertically opposite)
$A E B=X E B=90$ degrees (perpendicular as in Question)
Four right angles at F (diagonals of a square)
XEYF is a kite and since XEY $=$ XFY $=90$, then EYF and EXF add to 180. So EXF $=45+x$

Therefore DXA = 135-x (angles on straight line add to 180)
As angles in AXD add to 180, DAX $=x$
(4)

Therefore!! AYB is congruent to AXD due to Angle/Side/Angle

