Write your name here

Surname		Other names			
	Centre Number		Candidate Number		
Pearson Edexcel Level 1/Level 2 GCSE (9-1)					

Mathematics

Circle Theorems B

Paper Reference
1MA1
You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- You must show all your working.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

- The total mark for this paper is 23. There are $\mathbf{6}$ questions.
- Questions have been arranged in an ascending order of mean difficulty, as found by all students in the June 2017-November 2019 examinations.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

1MA1 Higher themed papers: Circle Theorems B

A, B, C and D are four points on the circumference of a circle.

$A E C$ and $B E D$ are straight lines.
Prove that triangle $A B E$ and triangle $D C E$ are similar.
You must give reasons for each stage of your working.

1MA1 Higher themed papers: Circle Theorems B

A, B, C and D are four points on a circle.

$A E C$ and $D E B$ are straight lines.
Triangle $A E D$ is an equilateral triangle.
Prove that triangle $A B C$ is congruent to triangle $D C B$.

1MA1 Higher themed papers: Circle Theorems B

3

A, B and C are points on the circumference of a circle, centre O. $A O B$ is a diameter of the circle.

Prove that angle $A C B$ is 90°
You must not use any circle theorems in your proof.

1MA1 Higher themed papers: Circle Theorems B

A, B, R and P are four points on a circle with centre O.
A, O, R and C are four points on a different circle.
The two circles intersect at the points A and R.
$C P A, C R B$ and $A O B$ are straight lines.
Prove that angle $C A B=$ angle $A B C$.

1MA1 Higher themed papers: Circle Theorems B

$5 \quad A, B, C$ and D are points on the circumference of a circle, centre O.

Prove that the sum of angle $A B C$ and angle $A D C$ is 180°

1MA1 Higher themed papers: Circle Theorems B

6

A, B and C are points on a circle, centre O.
$C T$ is the tangent to the circle at C.
Prove that angle $B A C=$ angle $B C T$.

