Name:

Level 2 Further Maths

Sine Rule

Cosine Rule

2
 Corbettmoths

Area of any Triangle

Ensure you have: Pencil or pen

Guidance

1. Read each question carefully before you begin answering it.
2. Check your answers seem right.
3. Always show your workings

Revision for this topic

www.corbettmaths.com/more/further-maths/

1. In triangle ABC ,
$A B=12 \mathrm{~cm}$, angle $B A C=80^{\circ}$ and $B C=22 \mathrm{~cm}$

Work out the size of angle ABC

$$
\begin{aligned}
& \frac{\sin \theta}{12}=\frac{\sin 80}{22} \\
& \sin \theta=0.5371 \ldots \\
& \theta=32.49 \\
& 180-80-32.49 . .=67.509 \ldots
\end{aligned}
$$

67.509...
2. In triangle ABC ,

$$
A B=22 \mathrm{~cm} \quad A C=20 \mathrm{~cm} \quad A C=31 \mathrm{~cm}
$$

Find the size of angle BAC

$$
\begin{aligned}
\cos \theta & =\frac{22^{2}+20^{2}-31^{2}}{2 \times 20 \times 22} \\
\cos \theta & =-\frac{7}{80} \\
\theta & =95.02
\end{aligned}
$$

3. In triangle ABC ,
$A B=15 \mathrm{~cm}$, angle $\mathrm{BAC}=29^{\circ}$ and angle $\mathrm{ACB}=77^{\circ}$

Find the length of the side AC.

$$
\begin{aligned}
& \frac{15}{\sin 77}=\frac{x}{\sin 74} \\
& x=14.798
\end{aligned}
$$

4. Shown below is triangle $A B C$.

The area of the triangle $14 \sqrt{3} \mathrm{~cm}^{2}$
Find the size of angle ACB

$$
\begin{gathered}
\frac{1}{2} \times 8 \times 7 \times \sin \theta=14 \sqrt{3} \\
28 \sin \theta=14 \sqrt{3} \\
\sin \theta=\frac{1}{2} \sqrt{3} \\
\sin \theta=\frac{\sqrt{3}}{2} \\
9=60
\end{gathered}
$$

5. Donhampton is 48 km from Castletown on a bearing of 057°.

Eastville is on a bearing of 084° from Castletown and on a bearing of 150° from Donhampton.

Calculate the distance of Eastville from Castletown.

$$
\begin{aligned}
& \frac{48}{\sin 66}=\frac{x}{\sin 87} \\
& x=52.47
\end{aligned}
$$

6. Boat A is 28 km from a lighthouse on a bearing of 053° Boat B is 19 km from the same lighthouse on a bearing of 164°

Calculate the distance between the two boats.

$$
\begin{aligned}
& A B^{2}=28^{2}+19^{2}-2 \times 19 \times 28 \times \cos 111 \\
& A B^{2}=1526.303498 \\
& A B=39.068
\end{aligned}
$$

7. The area of triangle ABC is $30 \mathrm{~cm}^{2}$ Angle ACB is obtuse.

Work out the size of angle ACB.

$$
\begin{gathered}
\frac{1}{2} \times 8 \times 12 \times \sin \theta=30 \\
48 \sin \theta=30 \\
\sin \theta=\frac{5}{8} \\
\theta=38.68^{\circ}
\end{gathered}
$$

\qquad
8. Shown below is a triangle.

Not drawn accurately

Work out the difference in size between the smallest and largest angles in the triangle.

$$
\begin{aligned}
& \frac{\sin \theta}{20}=\frac{\sin 54}{18} \\
& \sin \theta=0.8989 . \\
& \theta=64.015^{\circ} \\
& \underline{o r} \\
& \theta=115.985^{\circ}
\end{aligned}
$$

Option (1) 115.985-10.015 = 105.97
Option (2) $64.015-54=10.015$
9. Shown below is a triangle.

Calculate the area of the triangle

$$
\begin{aligned}
& \cos \theta=\frac{7^{2}+8^{2}-9^{2}}{2 \times 7 \times 8} \\
& \cos \theta=\frac{\frac{2}{7}}{7} \\
& \theta=73.3985^{\circ}
\end{aligned}
$$

$$
A=\frac{1}{2} \times 7 \times 8 \times \sin 73.3985
$$

$$
=26.83 \mathrm{~cm}^{2}
$$

. cm^{2}
10. Here is a triangle

$B C=5 \mathrm{~cm} \quad$ Angle $\mathrm{ACB}=150^{\circ} \quad \sin x^{\circ}=\frac{1}{\sqrt{10}}$
Work out the length of $A B$

$$
\begin{aligned}
& \frac{A B}{\sin 150}=\frac{5}{\sin x} \\
& \frac{A B}{\sin 150}=\frac{1}{\sqrt{10}} \\
& 2 A B=5 \sqrt{10} \\
& A B=\frac{5 \sqrt{10}}{2}
\end{aligned}
$$

$$
\begin{equation*}
\frac{5 \sqrt{10}}{2} \tag{cm}
\end{equation*}
$$

$$
\begin{equation*}
(7.906 \mathrm{~cm}) \tag{4}
\end{equation*}
$$

11. Shown below is triangle $A B C$.

$$
\mathrm{AB}=3 \mathrm{x} \quad \mathrm{BC}=\mathrm{x} \quad \angle B A C=12^{\circ}
$$

$\angle A C B$ is an obtuse angle.
Find the size of angle $\angle A C B$

$$
\begin{aligned}
& \frac{\sin \theta}{3 x}=\frac{\sin 12}{x} \\
& \sin \theta=\frac{3 x \sin 12}{x} \\
& \sin \theta=3 \sin 12 \\
& \sin \theta=0.6237 \ldots \\
& \theta=38.589 \ldots \\
& 90-38.589 .51 .41 \ldots \\
& 90+51.41 .
\end{aligned}
$$

12.

Express y in terms of x .

$$
\begin{aligned}
& y^{2}=(7 x)^{2}+(2 \sqrt{3} x)^{2}-2(7 x)(2 \sqrt{3} x) \cos 30 \\
& y^{2}=49 x^{2}+12 x^{2}-42 x^{2} \\
& y^{2}=19 x^{2} \\
& y=\sqrt{19} x
\end{aligned}
$$

13. Two ships, A and B, leave a port at midday.

Ship A travelled on a bearing of 085° at a speed of $15 \mathrm{~km} / \mathrm{h} \quad 4.5$
Ship B travelled on a bearing of 137° at a speed of $24 \mathrm{~km} / \mathrm{h} 72$
(a) How far apart are ships A and B at 15:00?

$$
\begin{aligned}
& A B^{2}=45^{2}+72^{2}-2 \times 45 \times 72 \times \cos 52 \\
& A P^{2}=7209-6480 \cos 52 \\
& A P^{2}=3219.51364 \ldots
\end{aligned}
$$

$$
A B=56 \cdot 74
$$

Sld 56.74 km
(4)
(b) What is the bearing of ship A from ship B at 15:00?

$$
\begin{aligned}
& \frac{\sin y}{72}=\frac{\sin 52}{56.74 \ldots} \\
& y=89.341 \ldots \\
& 360-89.321 .-95=175.679 \ldots \\
& 180-175.679 \ldots-4.32 \ldots
\end{aligned}
$$

14.

Work out the ratio $y: x$

$$
\begin{aligned}
& y^{2}=(3 x)^{2}+(4 x)^{2}-2(3 x)(4 x) \cos 120 \\
& y^{2}=9 x^{2}+16 x^{2}+12 x^{2} \\
& y^{2}=37 x^{2} \\
& y=\sqrt{37} x
\end{aligned}
$$

15.

$A B=6.6 \mathrm{~cm} \quad B C=x \mathrm{~cm} \quad A C=(x+3) \mathrm{cm}$
Angle ACB $=60^{\circ}$
Calculate the perimeter of $A B C$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
& 6 \cdot 6^{2}=x^{2}+(x+3)^{2}-x(x+3)(x) \cos 60 \\
& 6 \cdot 6^{2}=x^{2}+x^{2}+6 x+9-\left(x^{2}+3 x\right) \\
& 6.6^{2}=2 x^{2}+6 x+9-x^{2}-3 x \\
& 6 \cdot 6^{2}=x^{2}+3 x+9 \\
& 0=x^{2}+3 x-34.56 \\
& a=1 \quad b=3 \quad c=-34.56 \\
& x=4 \cdot 567 \quad \text { or } x=-7.567
\end{aligned}
$$

$$
\begin{equation*}
4.567+7.567+6.6 \tag{7}
\end{equation*}
$$

